
J. Fluid Mech. (2003), vol. 476, pp. 159–177. c© 2003 Cambridge University Press

DOI: 10.1017/S0022112002003026 Printed in the United Kingdom

159

On steady Stokes flow in a trihedral
rectangular corner

By A. M. G O M I L K O, V. S. M A L Y U G A
AND V. V. M E L E S H K O

Institute of Hydromechanics, National Academy of Sciences,
03680 Kiev, Ukraine

(Received 15 January 2002 and in revised form 23 August 2002)

Motivated by the recent paper of Hills & Moffatt (2000), we investigate the Stokes
flow in a trihedral corner formed by three mutually orthogonal planes, induced by a
non-zero velocity distribution over one of the walls of the corner. It is shown that the
local behaviour of the velocity field near the edges of the corner, where a discontinuity
of the boundary velocity is assumed, coincides with the Goodier–Taylor solution for
a two-dimensional wedge. Analysis of the streamline patterns confirms the existence
of eddies near the stationary edge in the flow, induced either by uniform translation
of one of the walls of the corner in the direction perpendicular to its bisectrix or
by uniform rotation of a side about the vertex of the corner. These flows are shown
to be quasi-two-dimensional. If the wall rotates about a centre displaced from the
vertex, the induced flow is essentially three-dimensional. In the antisymmetric velocity
field, a stagnation line appears composed of stagnation points of different types.
Otherwise the three-dimensionality manifests itself in a non-closed spiral shape of the
streamlines.

1. Introduction
The study of laminar motion of a viscous incompressible fluid in a container

bounded by a surface with singular points is an interesting problem in fluid mechan-
ics that involves considerable mathematical difficulties (Shankar & Deshpande 2000).
The problem may be complicated even more by the presence of a discontinuity in the
velocity at the edge at the boundary. Within the limits of the linear approximation
of the problem, this difficulty may be readily overcome provided the local behaviour
of the flow field near the points of discontinuity is known. Indeed, since the super-
position principle is valid, the solution may be presented as a superposition of the
known solution responsible for the discontinuity of the prescribed velocity and some
new solution satisfying continuous boundary conditions. One example is the Stokes
problem in a driven cubic cavity where the motion of the lid generates the fluid
motion. Although the geometry of the problem and the governing equations appear
simple, the asymptotic behaviour of the flow near the corners is still unresolved.

Stokes flow in a two-dimensional corner has been studied extensively by many
authors. The flow induced by the steady motion of one of the walls of the corner
parallel to itself is described by the well-known solution by Goodier (1934) and Taylor
(1962). The flow in a corner with fixed sides, induced by an arbitrary disturbance far
away from the vertex, was studied by Dean & Montagnon (1949) and Moffatt (1964).
It was shown that, provided that the corner angle is less than some critical value, an
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Figure 1. Geometry of the problem. Three spherical coordinate systems (r, θ(i), φ(i)), i = 1, 2, 3, with
a common origin at the vertex of the corner. The three axes θ(i) = 0 coincide with the three edges
of the corner. The coordinate curves of the system (r, θ(1), φ(1)) are shown on a sphere.

infinite sequence of eddies of decreasing size and strength would be generated. The
Poiseuille flow in a dihedral corner was studied by Moffatt & Duffy (1980).

It is natural to expect that in a trihedral corner the three-dimensional flow field
behaves near the edges in accordance with the aforementioned two-dimensional
solutions. Hills & Moffatt (2000) analysed the asymptotic behaviour of the flow near
the edge formed by two fixed triangular fins placed in a rotating cone and concluded
that there exists a sequence of eddies. The streamlines of the eddies lie on concentric
spheres with the centre at the cone’s vertex. This result was extended to the trihedral
corner treated as a cone of angle π/2 with the fins. A similar conclusion was reached
by Shankar (2000) who studied the Stokes problem in a trihedral corner with a non-
zero boundary velocity assigned within some ring at a corner’s wall. He established
the existence of corner eddies in the antisymmetric flow and found non-closed spirally
shaped streamlines. This complicated behaviour was caused by the three-dimensional
nature of the flow.

This paper concerns the Stokes flow in the trihedral corner formed by three mutually
orthogonal planes. The flow is induced by a non-zero tangential velocity prescribed
at one of the walls of the corner. The prescribed velocity is assumed to take non-zero
values at the edges. The technique developed in the paper is based on the method
of superposition, in the framework of which the velocity field is presented as a sum
of three vector fields. Each of them, being a solution of the Stokes equations, is
constructed in one of three spherical coordinate systems (r, θ(i), φ(i)), i = 1, 2, 3, with
a common origin at the vertex of the corner. These systems are introduced in such
a way that any wall of the corner lies in the equatorial plane of the corresponding
coordinate system (figure 1). It is well known that the Stokes equations admit a
representation of the velocity as a power of the radial spherical coordinate U = Arn u,
where u depends only on the physical coordinates, and A is some dimensional velocity.
We consider two typical cases, namely n = 0 and n = 1, corresponding to the simplest
and practically realizable examples of uniform translation and uniform rotation of
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the wall around the origin. Both flows are shown to be quasi-two-dimensional, and
the differential equations for the streamlines are integrable, and its integral expresses
the radial coordinate rof a fluid particle via its geographical coordinates. The flow
becomes essentially three-dimensional as the centre of the wall rotation is displaced
from the vertex. Depending upon the centre’s position, this results either in the
appearance of a stagnation line composed of stagnation points of different types or
in the appearance of non-closed spirally shaped streamlines. The conclusion by Hills
& Moffatt (2000) concerning the sequence of eddies is confirmed by the analysis of
the streamline patterns. It is shown that the principal term of the velocity field near
the edge, where one wall scrapes along the other, coincides with the Goodier–Taylor
solution for a two-dimensional wedge.

To conclude the Introduction it is necessary to determine for what range of values
of r the Stokes approximation is valid in the corner. For the solutions of the form
U = Arn u, the analysis is similar to that of Moffatt (1964) for a two-dimensional
corner. The Reynolds number

Re =
Arn+1

ν
(1.1)

is based on distance from the vertex. Here ν is the kinematic viscosity of a liquid.
Hence, the inertial forces in both cases (n = 0 and n = 1) are negligible in the
neighbourhood of the vertex.

Near the boundary, the applicability of the Stokes approximation is not so evident.
However, exploiting the fact established later in the paper that in the vicinity of the
edge, where one wall is scraped by the other, say θ(2) = 0, the velocity field behaves
in accordance with the Goodier–Taylor solution, one can estimate the orders of the
inertial and viscous forces near the edge:

U · ∇U = O

(
A2 r2n−1

sin θ(2)

)
, ν ∇2 U = O

(
νArn−2

sin2 θ(2)

)
, θ(2) → 0. (1.2)

The ratio of these terms provides the local Reynolds number near the edge

Re =
Arn ρ

ν
, (1.3)

where ρ = r sin θ(2) is distance from the edge. Hence, near the edges of the trihedral
corner, the inertial forces are negligible at any distance from the vertex provided the
distance from the edge is sufficiently small.

The paper is organized as follows: the formulation of the general problem is
described in § 2. The analytical solution method is described in § 3 along with consid-
erations of the correct reduction of the infinite system, and theoretical considerations
of the local behaviour of the velocity field near the edges. Next, § 4 contains some
numerical results concerning three typical cases of flows in the trihedral corner. The
structure of the closed streamlines is revealed in detail based upon general considera-
tions of the three-dimensional topology of the velocity field near a singular point. The
complicated eddy structure is analysed related to the type of flow excitation. Finally,
some conclusions related to the approach developed are given in § 5. Appendix A
contains standard tranformations relating the unit and arbitrary vectors in different
spherical coordinate systems with a common origin, and Appendix B contains the
right-hand sides of the main infinite system of equations.



162 A. M. Gomilko, V. S. Malyuga and V. V. Meleshko

2. Statement of the problem

The flow to be considered occurs in a trihedral corner formed by three mutually
orthogonal planes (figure 1). The region x > 0, y > 0, z > 0 between these planes is
occupied by a homogeneous incompressible fluid of viscosity µ. In the low Reynolds
number approximation, when the inertia forces are negligible in comparison to the
viscous ones, the velocity vector U and the pressure P are governed by the linear
system

µ∇2 U = ∇P , (2.1a)

∇ ·U = 0, (2.1b)

that represents the linearized vector equation of momentum (the Stokes approxima-
tion) and the continuity equation, respectively.

The creeping motion of the fluid is generated by motion of the bottom wall, z = 0,
while the two sidewalls remain fixed. In what follows we consider three typical cases
of motion of the bottom wall, namely a uniform translation with constant velocity
of value U0 in the direction of angle γ to the positive direction of the X-axis, a
rotation with angular velocity Ω about the origin O(0, 0) and a rotation with angular
velocity Ω about some point M(x0, y0) displaced from the vertex – problems A, B and
C, respectively, see figure 1.

The boundary conditions for the Cartesian components Ux, Uy , Uz of the velocity
vector U at the immovable walls are

Ux = 0, Uy = 0, Uz = 0 at x = 0, y > 0, z > 0,

Ux = 0, Uy = 0, Uz = 0 at y = 0, x > 0, z > 0.

}
(2.2)

At the bottom wall z = 0

Ux = U0 cos γ, Uy = U0 sin γ, Uz = 0 at z = 0, x > 0, y > 0 (2.3a)

for problem A, and

Ux = −Ω (y−y0), Uy = Ω (x−x0), Uz = 0 at z = 0, x > 0, y > 0 (2.3b)

for problem B (with x0 = 0, y0 = 0) and for problem C in the general case.

It is evident that the boundary velocity in problem C is a sum of the boundary
velocities in problems A and B when U0 sin γ = −Ω x0, U0 cos γ = Ω y0. In view of
the linearity, a solution of problem C can be found as a sum of solutions of problems
A and B.

It is important to point out that both of the conditions (2.3) provide non-zero
values of the velocity components at the edges of the corner; in other words, there is
a discontinuity of the applied velocity at the rims. One of the goals of our study is
to find the correct behaviour of the continuous velocity field inside the corner under
such a discontinuous applied velocity at the bottom wall.

2.1. Spherical coordinates: a particular case

In the case of problem B (the rotation about the origin O), the three-dimensional
problem (2.1), (2.3b) can be reduced to a two-dimensional one. Indeed, by introducing
a spherical coordinate system (r, θ, φ) with the origin at the vertex O, we may try to
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look for the following form of the velocity and pressure:

U (r, θ, φ) = r [ur(θ, φ) er + uθ(θ, φ) eθ + uφ(θ, φ) eφ], P (r, θ, φ) = p(θ, φ). (2.4)

Then, the continuity equation (2.1) written in spherical coordinates leads to

3 ur +
1

sin θ

∂

∂θ
(sin θ uθ) +

1

sin θ

∂uφ

∂φ
= 0, (2.5)

while the first scalar equation in the system (2.1) provides the homogeneous scalar
equation for the component ur:

Lω(ur) + 6 ur = 0, (2.6)

with the so-called Laplace–Beltrami operator on a sphere

Lω =
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
. (2.7)

Next, the boundary condition (2.3b) written in terms of the spherical components
of the velocity vector U provides ur = 0 at z = 0. Therefore, we may put ur ≡ 0, and
the continuity equation (2.5) allows us to introduce the stream function Ψ (θ, φ) such
that

uθ = − 1

sin θ

∂Ψ

∂φ
, uφ =

∂Ψ

∂θ
. (2.8)

Finally, both the second and third scalar equations in the Stokes vector equa-
tion (2.1) lead to the scalar equation

L2
ω (Ψ ) + 2 Lω (Ψ ) = 0. (2.9)

Thus, for the particular case x0 = 0, y0 = 0, the three-dimensional Stokes problem
in the corner can be reduced to the two-dimensional problem on a sphere for the
scalar function Ψ (θ, φ) with appropriate boundary conditions resulting from (2.3b).

2.2. Spherical coordinates: a general case

The particular case of usage of the spherical coordinates in problem B suggests
consideration of the general statement of the boundary problem (2.1)–(2.3) in such a
coordinate system. In view of the method of solution which will be presented below, it
is convenient to introduce three spherical coordinate systems (r, θ(i), φ(i)), i = 1, 2, 3,
with a common origin O at the vertex of the corner. These systems are such that
each of the corner walls lies in the equatorial plane of the corresponding coordinate
system (figure 1). In each of these three spherical systems the corner occupies the first
octant 0 6 r < ∞, 0 6 θ(i) 6 π/2, 0 6 φ(i) 6 π/2, i = 1, 2, 3.

The velocity vector U = Ur er + Uθ(i) eθ(i) + Uφ(i) eφ(i) and the pressure P (r, θ(i), φ(i))
satisfy equations (2.1) written in the corresponding spherical coordinates. Note that
the Laplace operator ∇2 being applied to the vector U in the spherical coordinates
provides another vector with components not equal to the scalar Laplacian of Ur ,
Uθ(i) , Uφ(i) (see, for example, Batchelor 1967, Appendix 2 for the coordinate form of
the governing equations). Relations between the components of the vector U in these
coordinate systems are given by (A 4).
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In further considerations we will use a more general form of the boundary condi-
tions, namely

Ur = rnf(i)(φ(i)), Uθ(i) = 0, Uφ(i) = rng(i)(φ(i)) at θ(i) = 1
2
π, (2.10)

with arbitrary smooth functions f(i), g(i) (i = 1, 2, 3) and n = 0, 1, . . . . Such a form
provides some compactness in analytical representations of the solution. For our
problems we may put n = 0, f(i)(φ(i)) = 0, g(i)(φ(i)) = 0, when i = 2, 3, and f(1)(φ(1)) =
U0 cos(φ(1) − γ), g(1)(φ(1)) = −U0 sin(φ(1) − γ) for problem A and n = 1, f(1)(φ(1)) = 0,
g(1)(φ(1)) = Ω for problem B.

3. Method of solution
To solve the three-dimensional creeping flow problem we need, first, to construct the

solution of the vector equations (2.1), and, secondly, to fulfil with that representation
for the velocity vector all boundary conditions (2.10). Usually, the second step is far
more difficult than the first one.

3.1. Solution of the governing equations

There are several approaches to constructing the representation of the velocity vector
U for the Stokes equations (2.1). We will use a general solution in spherical coordinates
in terms of three harmonic functions originally developed by Lamb (1932). A detailed
description of Lamb’s solution and its application to the solution of various creeping
flow problems can be found in Happel & Brenner (1965).

If the harmonic pressure P is represented as a series of spherical harmonics

P = µ
∑

pk, (3.1)

then the velocity vector U is expressed in terms of three sequences of spherical
harmonics

U =
∑[

∇× (rχk) + ∇Φk +
k + 3

2(k + 1)(2k + 3)
r2∇pk − k

(k + 1)(2k + 3)
rpk

]
. (3.2)

Here ∇× represents the curl of a vector, r is a radius vector of a point in the spherical
coordinates (r, θ, φ), Φk , χk , pk are solid spherical harmonics of order k of general
form rk Zk(θ, φ), with Zk being a surface spherical harmonic, satisfying the equation

Lω(Zk) + k (k + 1)Zk = 0, (3.3)

with the Laplace–Beltrami operator Lω defined by (2.7). The first two terms of
representation (3.2) are solutions of the homogeneous equations, corresponding to
the governing equations (2.1), whereas the third and fourth terms represent a particular
solution of the inhomogeneous equations.

In order to obtain sufficient functional arbitrariness to fulfil all boundary condi-
tions (2.10) at the walls we represent the velocity and pressure fields as superpositions
of three vector and scalar fields, respectively:

U = rn
3∑
i=1

u(i)(θ(i), φ(i)), P = µrn−1

3∑
i=1

p(i)(θ(i), φ(i)). (3.4)

Each pair of terms rnu(i), µrn−1p(i) represents a solution of the Stokes equations in the
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ith spherical coordinate system. They are determined from (3.1) and (3.2) as the terms
with power dependence rn and rn−1, respectively. For n > 1 (the singular case n = 0
will be considered later) these functions have the following representation:

p(i) = p
(i)
n−1, u(i)

r = (n+ 1)Φ(i)
n+1 +

n− 1

2 (2n+ 1)
p

(i)
n−1,

u
(i)
θ(i) =

∂Φ
(i)
n+1

∂θ(i)
+

1

sin θ(i)

∂χ(i)
n

∂φ(i)
+

n+ 2

2n(2n+ 1)

∂p
(i)
n−1

∂θ(i)
,

u
(i)
φ(i) =

1

sin θ(i)

∂Φ
(i)
n+1

∂φ(i)
− ∂χ(i)

n

∂θ(i)
+

n+ 2

2n(2n+ 1)

1

sin θ(i)

∂p
(i)
n−1

∂φ(i)
.


(3.5)

Here Φ(i)
n+1, χ

(i)
n p

(i)
n−1 denote three surface spherical harmonics in equation (3.3) for k

equal to n + 1, n, n − 1, respectively. These functions can be chosen in the form of
Fourier series on the complete trigonometric system on the interval 0 6 φ(i) 6 π/2

Φ
(i)
n+1 =

∞∑
m=1

X(i,1)
m

P−2m
n+1 (cos θ(i))

P−2m
1 (0)

sin 2mφ(i),

χ(i)
n =

C (i)

n (n+ 1)

Pn(cos θ(i))

P−1
n (0)

+

∞∑
m=1

X(i,2)
m

P−2m
n (cos θ(i))

P−2m
1 (0)

cos 2mφ(i),

p
(i)
n−1 =

∞∑
m=1

X(i,3)
m

P−2m
n−1 (cos θ(i))

P−2m
1 (0)

sin 2mφ(i),


(3.6)

with three sequences of as yet arbitrary coefficients X(i,1)
m , X(i,2)

m , X(i,2)
m , and an arbitrary

constant C (i). These sequences all depend on n but we omit this index without loss
of clarity, restricting our further consideration to a fixed value of n = 0 or n = 1.
Here Pn(ζ) is the Legendre polynomial and P−2µ

ν (ζ) denotes the associated Legendre
functions of the first kind, defined for ν = 0 and ν = 1 by

P
−2µ
0 (ζ) =

1

Γ(2µ+ 1)

(
1− ζ
1 + ζ

)µ
, P

−2µ
1 (ζ) =

1

Γ(2µ+ 2)

(
1− ζ
1 + ζ

)µ
(2µ+ ζ) (3.7)

(where Γ is the gamma function), and by recurrence relations (Abramowitz & Stegun
1965, p. 334)

(ν + 1 + 2µ)P−2µ
ν+1 (ζ) = (2ν + 1) ζ P−2µ

ν (ζ) + (2µ− ν)P−2µ
ν−1 (ζ). (3.8)

It follows from (3.5), (3.6) that the components of the vector u(i) can be written in
the form of Fourier series:

u(i)
r =

∞∑
m=1

q(i)
m (θ(i)) sin 2mφ(i), u

(i)
θ(i) =

∞∑
m=1

s(i)m (θ(i)) sin 2mφ(i),

u
(i)
φ(i) = C (i)P

−1
n (cos θ(i))

P−1
n (0)

+

∞∑
m=1

t(i)m (θ(i)) cos 2mφ(i), i = 1, 2, 3 ,

 (3.9)



166 A. M. Gomilko, V. S. Malyuga and V. V. Meleshko

with the notation

q(i)
m = (n+ 1)X(i,1)

m

P−2m
n+1 (cos θ(i))

P−2m
1 (0)

+
n− 1

2(2n+ 1)
X(i,3)
m

P−2m
n−1 (cos θ(i))

P−2m
1 (0)

, (3.10)

s(i)m = X(i,1)
m

P−2m ′
n+1 (cos θ(i))

P−2m
1 (0)

−X(i,2)
m

2m

sin θ(i)

P−2m
n (cos θ(i))

P−2m
1 (0)

+
n+ 2

2n(2n+ 1)
X(i,3)
m

P−2m ′
n−1 (cos θ(i))

P−2m
1 (0)

,

t(i)m = X(i,1)
m

2m

sin θ(i)

P−2m
n+1 (cos θ(i))

P−2m
1 (0)

−X(i,2)
m

P−2m ′
n (cos θ(i))

P−2m
1 (0)

+
n+ 2

2n(2n+ 1)
X(i,3)
m

2m

sin θ(i)

P−2m
n−1 (cos θ(i))

P−2m
1 (0)

.


(3.11)

Here the prime denotes a derivative with respect to θ(i). The sequences q(i)
m , s(i)m and t(i)m

depend on n but we also omit this index without loss of clarity.
The velocity field of the problem B is defined by (3.9), (3.10), (3.11) if we put

n = 1. In the case of problem A we cannot merely set n = 0. A particular solution of
the inhomogeneous equations (the terms containing n in the denominator) must be
chosen in another form. It leads to a different representation of the functions s(i)m , t(i)m ,
namely

s(i)m = X(i,1)
m

P−2m ′
1 (cos θ(i))

P−2m
1 (0)

−X(i,2)
m

2m

sin θ(i)

P−2m
0 (cos θ(i))

P−2m
1 (0)

−X(i,3)
m

cos θ(i)

2m

P−2m ′
0 (cos θ(i))

P−2m
1 (0)

,

t(i)m = X(i,1)
m

2m

sin θ(i)

P−2m
1 (cos θ(i))

P−2m
1 (0)

−X(i,2)
m

P−2m ′
0 (cos θ(i))

P−2m
1 (0)

−X(i,3)
m cot θ(i) P

−2m
0 (cos θ(i))

P−2m
1 (0)

,


(3.12)

whereas the function q(i)
m is obtained from (3.10) by the substitution n = 0.

Thus, the velocity field (3.4) has nine independent sets of the Fourier coefficients
X(i,j)
m (i, j = 1, 2, 3) and, potentially, has sufficient arbitrariness for satisfaction of the

nine boundary conditions (2.10).
The chosen form of the solution seems the best one for the problem under con-

sideration. Another type of representation for the velocity field was obtained by
Shankar (2000) by means of eigenfunction expansion based upon the general rep-
resentation by Tran-Cong & Blake (1982). That representation, however, leads to
complex eigenfunctions with unestablished asymptotic behaviour of the coefficients.

3.2. Satisfaction of the boundary conditions

The three spherical coordinate systems are arranged in such a way that the surface
θ(i) = π/2 can also be specified by φ(j) = 0, or φ(k) = π/2. Here and in what follows it
is assumed that the ordered triplet (i, j, k) takes the values (1, 2, 3), (2, 3, 1), (3, 1, 2).
(Any subsequent triplet is obtained from a previous one via a cyclic rearrangement.)
Other coordinates at the surface θ(i) = π/2 are related by θ(j) = φ(i), θ(k) = π/2− φ(i).
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From (3.4) follows that the velocity at this surface is

U = rn
[
u(i)
(

1
2
π, φ(i)

)
+ u(j)(φ(i), 0) + u(k)

(
1
2
π− φ(i), 1

2
π
)]
. (3.13)

The vectors u(j) and u(k) were originally determined in the jth and kth coordinate
systems, respectively. Their components in the ith coordinate system are given by (A 4)
using (A 1). At the surface θ(i) = π/2 these expressions are

u
(j)
θ(i) = −u(j)

φ(j) , u
(j)
φ(i) = u

(j)
θ(j) , u

(k)
θ(i) = u

(k)

φ(k) , u
(k)
φ(i) = −u(k)

θ(k) . (3.14)

Now from boundary conditions (2.10), representations (3.13), (3.9) and relations (3.14)
we obtain the nine functional equations

∞∑
m=1

q(i)
m ( 1

2
π) sin 2mφ(i) = f(i)(φ(i)),

∞∑
m=1

s(i)m ( 1
2
π) sin 2mφ(i) − C (j)P

−1
n (cosφ(i))

P−1
n (0)

−
∞∑
m=1

t(j)m (φ(i))

+C (k)P
−1
n (sinφ(i))

P−1
n (0)

+

∞∑
m=1

(−1)m t(k)m ( 1
2
π− φ(i)) = 0,

C (i) +

∞∑
m=1

t(i)m ( 1
2
π) cos 2mφ(i) = g(i)(φ(i)).



(3.15)

The left-hand sides of the first and third triplets of equations (3.15) represent
ordinary Fourier series, and, consequently,

q(i)
m

(
1
2
π
)

= f(i)
m , C (i) = g

(i)
0 , t(i)m

(
1
2
π
)

= g(i)
m , m = 1, 2, . . . , i = 1, 2, 3, (3.16)

with the Fourier coefficients of the prescribed functions given as

f(i)
m =

4

π

∫ π/2

0

f(i)(φ) sin 2mφ dφ,

g
(i)
0 =

2

π

∫ π/2

0

g(i)(φ) dφ , g(i)
m =

4

π

∫ π/2

0

g(i)(φ) cos 2mφ dφ.

 (3.17)

Equations (3.16) permit one to obtain the algebraic relations between the unknown
coefficients and to express two sets of coefficients via the third one. For problem A
these relations are

1

2

(
1 +

1

2m

)
X(i,3)
m = X(i,1)

m − f(i)
m ,

(
1 +

1

2m

)
X(i,2)
m = X(i,1)

m − 1

2m
g(i)
m . (3.18)

For problem B these relations are

X(i,1)
m =f(i)

m

m(2m+ 2)

(2m)2 − 1
, X(i,3)

m

m

2m− 1
=X(i,2)

m − 2m

(2m)2 − 1
(mf(i)

m − g(i)
m ). (3.19)

Expansion into Fourier series of the second triplet of equations (3.15) in view of
relations (3.18) and (3.19) for problems A and B, respectively, leads to a triply infinite
system of linear algebraic equations.

For problem A the triply infinite system for the set of unknowns X(i,1)
m (i = 1, 2, 3)

is

X(i,1)
m − 2m

∞∑
l=1

Dm,l

(
X

(j,1)
l + (−1)m+lX

(k,1)
l

)
= S (i)

m , m = 1, 2, . . . (3.20)
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with the coefficients

Dm,l =
4

π

∫ π/2

0

cotφ

(
1− cosφ

1 + cosφ

)l
sin 2mφ dφ, m, l = 1, 2, . . . (3.21)

For problem B the triply infinite system for the set of unknowns X(i,2)
m (i = 1, 2, 3) is

X(i,2)
m − 2m

∞∑
l=1

(
Dm,l +

Fm,l

2l

) (
X

(j,2)
l + (−1)m+lX

(k,2)
l

)
= Q(i)

m , m = 1, 2, . . . (3.22)

where the coefficients are given as

Fm,l =
4

π

∫ π/2

0

cos2 φ

sinφ

(
1− cosφ

1 + cosφ

)l
sin 2mφdφ, m, l = 1, 2, . . . . (3.23)

The expressions for the right-hand-side terms S (i)
m , Q(i)

m are given in Appendix B. It is
very difficult to express the integrals for Dm,l and Fm,l in closed form and in all the
problems considered they were evaluated numerically.

On substitution of (3.7), (3.18) into (3.10) for n = 0 and (3.12), (3.9) provides the
final expressions for the three vectors u(i) of problem A:

u(i)
r =

∞∑
m=1

f(i)
m R

2m
i sin 2mφ(i) + cos θ(i)

∞∑
m=1

X(i,1)
m

R2m
i

2m
sin 2mφ(i),

u
(i)
θ(i) =

1

sin θ(i)

∞∑
m=1

(
2f(i)

m cos θ(i) + g(i)
m

)
R2m
i sin 2mφ(i)

−
∞∑
m=1

X(i,1)
m

(
cot θ(i) +

1

2m
sin θ(i)

)
R2m
i sin 2mφ(i),

u
(i)
φ(i) = g

(i)
0 Ri +

1

sin θ(i)

∞∑
m=1

(
2f(i)

m cos θ(i) + g(i)
m

)
R2m
i cos 2mφ(i)

− cot θ(i)

∞∑
m=1

X(i,1)
m R2m

i cos 2mφ(i),



(3.24)

where the following notation was introduced:

Ri =

(
1− cos θ(i)

1 + cos θ(i)

)1/2

= tan
θ(i)

2
.

The final expressions for u(i) in problem B can be obtained by substitution (3.7),
(3.8), (3.19) into (3.9), (3.10), (3.11) for n = 1.

3.3. Asymptotic analysis of the solution

A traditional method of solution of infinite systems is the method of simple reduction
(see Kantorovich & Krylov 1964 for further details) based upon truncation of an
infinite system to a finite one, solving it by any available technique and subsequent
increase of the number of unknowns and equations involved. However, one needs
first to analyse the asymptotic behaviour of the unknowns. If they do not decrease
or decrease slowly, the truncation of the system may cause unacceptable errors. The
asymptotic analysis of the systems in question was performed by means of the Mellin
transform technique similar to Gomilko (1993) and Meleshko & Gomilko (1997). In
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our case the Mellin transformation could not be directly applied to the algebraic
system (3.20). The first step consisted in reducing the triply infinite algebraic system
to a system of three integral equations.

The final result for the unknowns of system (3.20) is

X(i,1)
m = A(i) + x(i)

m , m = 1, 2, . . . , (3.25)

where the leading terms and the order of the remainders are

A(1) = − 8

π2 − 4

[
g(1)(0) + (−1)mg(1)( 1

2
π)
]
, A(2) =

4π

π2 − 4
g(1)( 1

2
π),

A(3) = (−1)m
4π

π2 − 4
g(1)(0), x(i)

m = O

(
ln m

m

)
, m→∞.

 (3.26)

Such a logarithmic behaviour was also reported by Meleshko, Malyuga & Gomilko
(2000) for the lidded cylindrical cavity problem. Notice that if g(1)(0) 6=0 or g(1)(π/2) 6=0
then the unknowns X(i,1)

m do not tend to zero with m→∞. This causes a problem for
the direct application of the simple reduction method.

Knowledge of the asymptotic behaviour of the unknowns provides a way of using
the method of simple reduction. Relations (3.25) permit one to introduce the new
unknowns x(i)

m that tend to zero as m tends to infinity. Substitution of these relations
into (3.20) provides an infinite system for the new unknowns which can be successfully
truncated.

The asymptotic behaviour of the unknowns (3.25) with (3.26) also provides a way
of considerably improving convergence of the series included in the solution. This
procedure is necessary for the accurate evaluation of the velocity near the boundary
of the corner, where the series converge slowly, and thus truncation of them may
cause impermissible numerical errors. It consists in substitution of (3.25) into the
three vector fields (3.24) and replacement of the series inclusive of A(i) by their sums
(Prudnikov, Brychkov & Marichev 1986). The series containing the new unknowns
x(i)
m converge more rapidly.
Taking into account the asymptotic behaviour of the sums, along with the asymp-

totic behaviour of the series including f(i)
m , g(i)

m , one can derive the local velocity near
the edge θ(2) = 0. The mathematical manipulations are not complicated but are rather
cumbersome. The final result is presented in the system (r, θ(2), φ(2)) as follows:

ulocr = f(1)(0)

(
1− 2φ(2)

π

)
,

uloc
θ(2) = g(1)(0)

{
cosφ(2) − 4

π2 − 4

[
1
2
πφ(2) cosφ(2) + ( 1

2
π− φ(2)) sinφ(2)

]}
,

uloc
φ(2) = g(1)(0)

4

π2 − 4

[
φ(2) cosφ(2) − 1

2
π( 1

2
π− φ(2)) sinφ(2)

]
.


(3.27)

The components uloc
θ(2) , u

loc
φ(2) coincide with the radial and angular components, respec-

tively, of the velocity field in the two-dimensional corner with angle π/2 found by
Goodier (1934) and Taylor (1962); see also Batchelor (1967, p. 224).

Numerical tests of satisfaction of the boundary conditions by the normal velocity
components uθ(1) at the wall θ(1) = π/2 and uφ(1) at φ(1) = 0 and φ(1) = π/2 show an
accuracy of within 0.1% near the edges and much less inside the walls. The tangential
velocity components satisfy the boundary conditions identically. It is worth noting
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that this accuracy can even be increased by taking into account not only the first but
also the higher-order terms of the asymptotic expansion of the unknowns.

It should be mentioned that, in contrast to the particular problem considered in
Hills & Moffatt (2000), where, due to the specific geometry of a dihedral corner
and the stated boundary conditions, the singular terms of stress are cancelled in the
expression for the total force on the blade, in the case under consideration, these
terms integrate to produce an infinite total force on the fixed walls.

4. Streamline structure
The families of streamlines of both problems A and B are given by the system of

differential equations

dr

ur
=
r dθ(i)

uθ(i)

=
r sin θ(i) dφ(i)

uφ(i)

. (4.1)

Separation of the radial and geographical coordinates followed by integration along
a streamline provides the first integral of motion. It expresses the radial coordinate of
an individual particle in terms of its geographical coordinates and the initial position

r

r0
= exp

(∫ θ(i)

θ
(i)
0

ur dθ(i)

uθ(i)

)
= exp

(∫ φ(i)

φ
(i)
0

ur sin θ(i) dφ(i)

uφ(i)

)
, (4.2)

where the integrals are taken along the projection of the streamline on a spherical
surface, and (r0, θ

(i)
0 , φ

(i)
0 ) is the initial position of the particle. Taking into account

the continuity equation, one can present (4.2) as follows

r

r0
= exp

(
− 1

n+ 2

∫ (θ(i) ,φ(i))

(θ
(i)
0 ,φ

(i)
0 )

∇ · us
us

dl

)
. (4.3)

Here us = (0, uθ(i) , uφ(i) ). In problem A, us represents the velocity of the particle motion
over the sphere of radius r. The element dl is an elementary arc on this sphere. From
(4.3) we arrive at the following conclusion valid for problem A: if any elementary
material volume moves away from the vertex, the area of its cross-section through
the sphere of radius r decreases. A motion towards the vertex increases the area
of the cross-section by the sphere. In problem B, us is the velocity of the particle
projection on the unit sphere. The integral (4.3) also leads to another conclusion. If an
elementary volume moves away from the vertex, the area of its projection on the unit
sphere decreases. A motion towards the vertex increases the area of the projection on
the unit sphere.

The numerical analysis of several flows driven by the motion of a rigid lid is
performed on the basis of the solutions derived in § 3. The flow induced by a uniform
translation of the bottom wall is a simple, practically realizable example of problem A.
The motion of the wall parallel to its bisectrix generates a symmetric velocity field.
For definiteness, let the wall move toward the vertex, i.e. in the direction of the angle
γ = 5π/4 to the positive direction of the X-axis. If the direction of the wall translation
is perpendicular to the bisectrix (say, γ = 3π/4), the induced flow is an example of
the antisymmetric problem.

Streamline patterns of the symmetric and antisymmetric flows of problem A are
presented in figures 2(a) and 2(b), respectively. The streamlines of the symmetric
flow are non-closed. The motion in the plane of symmetry φ(1) = π/4 is strictly
two-dimensional. In the antisymmetric velocity field the streamlines are closed. This
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h (2) = 0

h (3) = 0

h (1) = 0
(a)

h (2) = 0

h (3) = 0

h (1) = 0
(b)

Figure 2. Streamline patterns for problem A. (a) The bottom wall moves along its bisectrix.
(b) The bottom wall moves in a direction perpendicular to its bisectrix.

follows from the symmetry of the streamlines about the plane φ(1) = π/4. If any of
them intersects that plane twice, it is closed.

The primary eddy that occupies the region adjacent to the bottom wall is separated
from the secondary eddy situated in the neighbourhood of the stationary edge θ(1) = 0
by a dividing surface. The intersection of that surface and a sphere is a line, referred to
as a separatrix. The point of intersection of the separatrix and the sidewall φ(1) = 0 is
determined by the condition of zero shear stress. Let its position be (r, θ∗, 0). The angle
of inclination of the separatrix to the sidewall can be evaluated in the local spherical
coordinate system (r, θ(loc), φ(loc)) with the origin at the vertex. The axis θ(loc) = 0
coincides with the line θ(1) = θ∗, φ(1) = 0. The system (r, θ(1), φ(1)) can be readily
transformed to the system (r, θ(loc), φ(loc)) by a rotation through the angle θ∗ about
the axis θ(1) = π/2, φ(1) = π/2. The next step is based on the Taylor expansion of the
velocity field near θ(loc) = 0. It leads to the following equations for the determination
of the position of the point and the angle of inclination of the separatrix:

∂uθ(1)

∂φ(1)

∣∣∣∣
(r,θ∗ ,0)

= 0, tanφ(loc) = −
(

2 sin θ∗
∂2uθ(1)

∂θ(1)∂φ(1)
− ∂2uφ(1)

∂φ(1)2

)/
∂2uθ(1)

∂φ(1)2

at θ(1) = θ∗, φ(1) = 0. (4.4)

In view of the linearity of the problem, the velocity of the flow driven by the
translation of the bottom wall in the direction of some angle γ can be presented as a
linear combination of the corresponding symmetric and antisymmetric fields:

U = − cos
(
γ − π

4

)
U s + sin

(
γ − π

4

)
U a, (4.5)

where U s and U a are symmetric and antisymmetric velocity fields, respectively.
Figure 3(a) shows the streamline plot for cot(γ − π/4) = −0.1. One can observe the
appearance of spirals as a result of the combination of the rotation generated by the
antisymmetric part and the motion caused by the symmetric part. When increasing
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h (3) = 0

h (2) = 0

h (1) = 0
(a)

h (2) = 0

h (3) = 0

h (1) = 0
(b)

Figure 3. Streamline patterns for problem A. (a) cot(γ − π/4) = −0.1;
(b) cot(γ − π/4) = −1, the wall moves parallel to the edge θ(2) = 0.

the absolute value of cot(γ − π/4), the spirals become less tightly wound. They are
not seen in figure 3(b), which illustrates the streamline patterns for cot(γ−π/4) = −1.
In this case the bottom wall moves parallel to the edge. Near the stationary edge, the
spirals are not observed even for small |cot(γ − π/4)|. This result is not unexpected
as the Poiseuille flow in a dihedral corner has velocity of order ρ2 log ρ (Moffatt &
Duffy 1980), where ρ is distance from the edge. It dominates over Moffatt’s velocity
field, which is of the order about ρ2.74 (Moffatt 1964).

The flow induced by the uniform rotation of the bottom wall about the vertex is a
simple, experimentally realizable example of problem B. The local behaviour of the
flow near the stationary edge θ(1) = 0 was analysed by Hills & Moffatt (2000), who
considered the trihedral corner as a limiting case of a cone partitioned by two rigid
triangular fins. The power dependence of the dominant term of the velocity on θ(1)

(in our notation) with a complex exponent led the authors to the conclusion that a
sequence of eddies existed near the stationary edge. The streamlines shown in figure 4
lie on a sphere with its centre at the vertex. As a consequence of the velocity field
symmetries, the streamlines are closed and symmetric about the plane φ(1) = π/4. The
secondary eddy near the stationary edge confirms the asymptotic analysis by Hills &
Moffatt (2000).

Now let us turn to problem C. Let the wall rotate with the angular velocity Ω
about the point M(x0, y0). As already pointed in § 2, a solution of problem C can
be found as a sum of solutions of problems A and B if we put U0 sin γ = −Ωx0,
U0 cos γ = Ωy0. From (4.5) follows that the dimensionless velocity is represented as a
superposition of the three above-described velocities:

U

U0

=
1√
2U0

[
x0 − y0

R
U s − x0 + y0

R
U a

]
+
r

R
uΩ, (4.6)

where (r/R) uΩ is the dimensionless velocity of the flow induced by the wall rotation
about the vertex, and R = (x2

0 + y2
0)1/2 is distance OM. Integral (4.3) is not valid

for such flows. The flow behaviour may change significantly with the ratio r/R. Two
simple examples illustrate the three-dimensional nature of the streamlines.

If the centre M is on the bisectrix (x0 = y0), representation (4.6) is simplified to
a combination of only two antisymmetric velocities. It is essential that the centre
of the wall rotation is inside the corner, as in this case the two terms are opposite
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h (3) = 0

h (2) = 0

h (1) = 0

Figure 4. Streamline patterns for problem B. The flow is induced by the rotation of the bottom
wall about the vertex.

in sign. The first of them dominates near the vertex r � R, whereas the second
term contributes to the velocity at some distance from the vertex. Figure 5(a) shows
the streamline patterns of the flow. The behaviour of the streamlines of the eddy
structures close to the stationary edge is of particular interest. The stagnation lines
(lines of zero velocity) are presented in figure 5(b). They lie in the plane φ(1) = π/4.
The three-dimensionality of the problem results in the different nature of the flow
near different points of the common stagnation line. As one can see from figure 5(c),
where the streamlines near the vertex are shown, the stagnation line consists of centres
at small and large distances from the vertex. These parts of the curve are connected
via a segment composed of saddles. Such a behaviour, which has not been observed
in the quasi-two-dimensional flows discussed above, shows that the three-dimensional
corner structures are more complicated and may have not only the nature of an eddy.

If point M is on the straight line passing through the vertex and perpendicular
to the bisectrix of the bottom side of the corner (x0 = −y0), the second term in
representation (4.6) vanishes. Streamlines for this flow are presented in figure 5(d ).
The combination of the symmetric and antisymmetric fields leads to the appearance
of spirally shaped streamlines.

The difference in behaviour of a streamline near to and far away from the vertex is
especially noticeable when M is close to the bisectrix of the bottom wall. Figure 6(a)
shows a streamline in the case that (x0− y0)/(x0 + y0) = cot(γ−π/4) = −0.1. Now all
three terms in (4.6) are non-zero. An enlarged view of the portion of the curve situated
in the vicinity of the vertex is shown in figure 6(b). Because of the insignificant role
of the term r/R uΩ at small r/R, the streamline bears some resemblance to the curve
shown in figure 3(a).

5. Conclusions
The essential results of the paper are the following. The method of superposition

was successfully applied to solve the Stokes problem in the trihedral corner with a
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h (3) = 0

h (2) = 0

h (1) = 0

M

(a)

h (3) = 0

h (2) = 0

h (1) = 0

M

(b)

h (3) = 0

h (2) = 0

h (1) = 0

(c)

h (3) = 0

h (2) = 0

h (1) = 0

M

(d )

Figure 5. Problem C. The bottom wall rotates about the centre M displaced from the vertex of the
corner. In (a–c) the centre M is on the bisectrix of the wall. (a) Streamline patterns; (b) stagnation
lines; (c) streamlines in the neighbourhood of the vertex; the stagnation line (dotted line) includes
both centres and saddles. (d ) The winding streamline; the centre M is on the perpendicular to the
bisectrix, which passes through the vertex.

non-zero tangential velocity prescribed at one wall. The analysis of the asymptotic
behaviour of the unknown coefficients provided a way of refining the technique to
obtain high accuracy everywhere in the corner. The velocity field was shown to behave
near the edges, where the discontinuity of the tangential velocities was preassigned,
in accordance with the Goodier–Taylor solution in a two-dimensional corner of angle
π/2. The numerical analysis of the flow topology near the edge formed by two fixed
walls confirmed the existence of eddies.

The flow driven by the wall rotation about the vertex was shown to be strictly
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h (3) = 0

h (2) = 0

h (1) = 0

M

(a)

h (3) = 0

h (2) = 0

h (1) = 0

(b)

Figure 6. Problem C. One streamline of the flow induced by the rotation of the bottom wall about
M at (x0 − y0)/(x0 + y0) = cot(γ − π/4) = −0.1. (a) The general view. (b) An enlarged view of the
region close to the vertex.

two-dimensional. In this special case the streamlines are closed and lie on a spherical
surface. An integral of the motion was found in the case that the velocity was of the
form U = rn u, where u was a function of only the physical coordinates. Such flows
are quasi-two-dimensional. Although all three scalar components of the velocity may
be non-zero, only the physical coordinates of an individual particle are independent.
As an example the flow driven by the wall translation in a tangential direction was
studied.

The flow becomes essentially three-dimensional if the wall rotates about a centre
displaced from the vertex. Integral (4.3) is not valid for such flows. The corner
structures near the stationary edge are more complicated. The stagnation lines,
usually considered as centrelines of the corner eddies, may contain saddle points.

A similar method is used for the cases where the planes are not orthogonal. In such
cases the results may be qualitatively similar to those given here if the angles between
the planes are near π/2, but otherwise could be rather different. This problem still
remains challenging.

We are grateful to Professor V. T. Grinchenko from the Institute of Hydromechan-
ics, Kiev and Professor A. F. Ulitko from Kiev University for helpful discussions
concerning the vector structure of the three-dimensional Stokes problem. Our thanks
also go to referees for suggestions that led to improvement in presentation of the
paper.

Appendix A
Three spherical coordinate systems (r, θ(i), φ(i)), i = 1, 2, 3, shown in figure 1 are

introduced in such a way that the axis θ(i) = 0 coincides with the axes θ(j) =
π/2, φ(j) = π/2 and θ(k) = π/2, φ(k) = 0. The triplet (i, j, k) takes the values (1, 2, 3),
(2, 3, 1), (3, 1, 2). The second and third values are obtained from the first one
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by cyclic rearrangements. The simplest way of deriving a relationship between the
coordinate systems is the following. First, the spherical coordinates (r, θ(i), φ(i)) are
transformed into the corresponding Cartesian coordinates (x(i)

1 , x
(i)
2 , x

(i)
3 ). It is easy

to see that (x(i)
1 , x

(i)
2 , x

(i)
3 ) = (x(j)

3 , x
(j)
1 , x

(j)
2 ) = (x(k)

2 , x
(k)
3 , x

(k)
1 ). Then returning to the

spherical coordinates we obtain the relations

cos θ(j) = sin θ(i) cosφ(i), cotφ(j) = tan θ(i) sinφ(i),

cos θ(k) = sin θ(i) sinφ(i), cotφ(k) = cot θ(i) secφ(i).

}
(A 1)

Relations between the components of a vector field U in three spherical coordinate
systems with a common origin can be derived as follows.

The unit coordinate vectors of the spherical coordinate system (r, θ(i), φ(i)), i =
1, 2, 3, are related by

eθ(i) =
∂er

∂θ(i)
, eφ(i) =

1

sin θ(i)

∂er

∂φ(i)
. (A 2)

These equations may be readily obtained from the definition of unit coordinate vectors
as derivatives of a radius-vector with respect to arcs of the corresponding coordinate
curves. Considering θ(i), φ(i) as functions of θ(s), φ(s), s = 1, 2, 3 we can rewrite (A 2)
as

eθ(i) =
∂er
∂θ(s)

∂θ(s)

∂θ(i)
+

∂er
∂φ(s)

∂φ(s)

∂θ(i)
, eφ(i) =

1

sin θ(i)

(
∂er
∂θ(s)

∂θ(s)

∂φ(i)
+

∂er
∂φ(s)

∂φ(s)

∂φ(i)

)
. (A 3)

Equations (A 2) have the same form in the sth coordinate system. Substituting them
into (A 3) and then multiplying the left- and right-hand sides by the vector U , we
obtain the relations

Uθ(i) = Uθ(s)

∂θ(s)

∂θ(i)
+Uφ(s) sin θ(s) ∂φ

(s)

∂θ(i)
,

Uφ(i) =
1

sin θ(i)

(
Uθ(s)

∂θ(s)

∂φ(i)
+Uφ(s) sin θ(s) ∂φ

(s)

∂φ(i)

)
.

 (A 4)

Equations (A 4) relate components of the velocity vector U in two arbitrary spherical
coordinate systems with a common origin.

Appendix B
The right-hand-side terms in the infinite system (3.20) are

S (i)
m = −4mχm

(
g

(j)
0 + (−1)mg(k)

0

)
+ 2mg(i)

m

−4m

∞∑
l=1

Dm,l
(
f

(j)
l + (−1)m+lf

(k)
l

)− 2m

∞∑
l=1

Em,l
(
g

(j)
l + (−1)m+lg

(k)
l

)
, (B 1)

where

χm =
2

π

∫ π/2

0

(
1− cosφ

1 + cosφ

)1/2

sin 2mφ dφ,

Em,l =
4

π

∫ π/2

0

1

sinφ

(
1− cosφ

1 + cosφ

)l
sin 2mφ dφ, m, l = 1, 2, . . . .

 (B 2)
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The right-hand-side terms in the infinite system (3.22) are

Q(i)
m =

4

π

(2m)2

(2m)2 − 1

(
(−1)mg(j)

0 + g
(k)
0

)
+ 2m

(
g(i)
m − 3m

(2m)2 − 1
f(i)
m

)

−3m

∞∑
l=1

2l

(2l)2 − 1
(2lDm,l + Fm,l)

(
f

(j)
l + (−1)m+lf

(k)
l

)

−2m

∞∑
l=1

Em,l
(
g

(j)
l + (−1)m+lg

(k)
l

)
. (B 3)
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